Asymptotic behavior ofA+B→ inert for particles with a drift

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behavior of A+B--> inert for particles with a drift.

We consider the asymptotic behavior of the (one dimensional) two-species annihilation reaction A + B → 0, where both species have a uniform drift in the same direction and like species have a hard core exclusion. Extensive numerical simulations show that starting with an initially random distribution of A's and B's at equal concentration the density decays like t −1/3 for long times. This proce...

متن کامل

Processes with Inert Drift

We construct a stochastic process whose drift is a function of the process’s local time at a reflecting barrier. The process arose as a model of the interactions of a Brownian particle and an inert particle in [7]. We construct and give asymptotic results for two different arrangements of inert particles and Brownian particles, and construct the analogous process in R.

متن کامل

Stationary distributions for diffusions with inert drift

Consider a reflecting diffusion in a domain in R that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting process and the value of the drift vector has a product form. Moreover, the first component is the symmetrizing measure on the domain for the reflecting dif...

متن کامل

Stationary Distributions for Jump Processes with Inert Drift

We analyze jump processes Z with “inert drift” determined by a “memory” process S. The state space of (Z, S) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of (Z, S) is the product of the uniform probability measure and a Gaussian distribution.

متن کامل

Asymptotic behavior of a finite volume scheme for the transient drift-diffusion model

In this paper, we propose a finite volume discretization for multidimensional nonlinear drift-diffusion system. Such a system arises in semiconductors modeling and is composed of two parabolic equations and an elliptic one. We prove that the numerical solution converges to a steady state when time goes to infinity. Several numerical tests show the efficiency of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 1995

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.51.1858